Home
Class 12
MATHS
If f(x)=|x|^(|sinx|), then f'((pi)/(4)) ...

If `f(x)=|x|^(|sinx|)`, then `f'((pi)/(4))` equals

A

`((pi)/4)^(1//sqrt(2)).((sqrt(2))/2. "log"4/(pi) - (2sqrt(2))/(pi))`

B

`((pi)/4)^(1//sqrt(2)).((sqrt(2))/2. "log"4/(pi) + (2sqrt(2))/(pi))`

C

`((pi)/4)^(1//sqrt(2)).((sqrt(2))/2. "log"(pi)/4 - (2sqrt(2))/(pi))`

D

`((pi)/4)^(1//sqrt(2)).((sqrt(2))/2. "log"(pi)/4 + (2sqrt(2))/(pi))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x|^(|tan x|) then f'(-(pi)/(6)) is equal to

If f(x)=|cos x-sin x|, then f'((pi)/(2)) is equal to

If f(x)=|cos x|, then f' ((3pi)/(4)) is equal to

If f(x)=|cosx|, then f'((3 pi)/(4)) equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cos x|, then f((3 pi)/(4)) is equal to

If f(x)=(1-cosx)/(1-sinx)," then: "f'((pi)/(2)) is

f(x)=|cos2x|; then f'((pi)/(4)+theta) is equal to