Home
Class 12
MATHS
f(x)=(cosx-sin2x)/((pi-2x)^2);g(x)=(e^(-...

`f(x)=(cosx-sin2x)/((pi-2x)^2);g(x)=(e^(-cosx)-1)/(8x-4pi)`

A

h is continuous at `x=pi//2`

B

h has an irremovable discontinuity at `x=pi//2`

C

h has a removable discontinuity at `x=(pi)/2`

D

`f((pi')/2)=((pi)/2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(cos x-sin2x)/((pi-2x)^(2));g(x)=(e^(-cos x)-1)/(8x-4 pi)

Let f(x)={{:((1-cosx)/((2pi-x)^(2)).(tan^(2)x)/(ln(1+4pi^(2)-4pix+x^(2))),":",xne2pi),(lambda,":",x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

Let f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2)x)/(ln(1+pi^(2)-2pix+x^(2))),x ne pi),(lambda, x=pi):}

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

f(x)=1+[cosx]x,"in "0ltxle(pi)/(2)

If f(x)={(sin(cosx)-cosx)/((pi-2x)^2)\ \ \ ,\ \ \ x!=pi/2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ ,\x=pi/2 is continuous at x=pi/2 , then k is equal to (a) 0 (b) 1/2 (c) 1 (d) -1

If the function f(x)={((sqrt(2+cosx)-1)/(pi-x)^2 ,; x != pi), (k, ; x = pi):} is continuous at x = 1, then k equals:

If y=((log)_(cosx)sinx)((log)_(sinx)cosx)+sin^(-1)(2x)/(1+x^2) , then (dy)/(dx) at x=pi/2 is equal to.......