Home
Class 12
MATHS
Consider f(x)=[(2(sinx-sinx-sin^3x))+|s...

Consider `f(x)=[(2(sinx-sinx-sin^3x))+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx-sin^3x|], x != pi/2` for `x in (0,pi), f(pi/2) = 3` where [ ] denotes the greatest integer function then,

A

f is continuous and differentiale at `x=(pi)/2`

B

f is continuous but not differentiable at `x=(pi)/2`

C

f is neither continuous nor differentiable at `x=(pi)/2`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider f(x)=((2(sin x-sin x-sin^(3)x))+|sin x-sin^(3)x|)/(2(sin x-sin^(3)x)-|sin x-sin^(3)x|),x!=(pi)/(2) for x in(0,pi),f((pi)/(2))=3 where [1 denotes the greatest integer function then,

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

(sinx-sin3x)/(sin^(2)x-cos^(2)x) = 2sinx

f(x)=sin[x]+[sinx],0

If f(x)=sin((pi)/(3)[x]-x^(2)) then the value of f(sqrt((pi)/(3))) is (where [x] denotes the greatest integer function )

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)