Home
Class 12
MATHS
Consider the function f(x) = [{:(x{x}+1"...

Consider the function `f(x) = [{:(x{x}+1",","if",0 le x lt 1),(2-{x}",","if",1 le x le 2):}`, where {x} denotes the fractional part function. Which one of the following statements is not correct ?

A

`lim_(xto1)f(x)` exists

B

`f(0)!=f(2)`

C

`f(x)` is continuous in `[0,2]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Consider a function defined in [-2,2] f (x)={{:({x}, -2 le x lt -1),( |sgn x|, -1 le x le 1),( {-x}, 1 lt x le 2):}, where {.} denotes the fractional part function. The number of points for x in [-2,2] where f (x) is non-differentiable is:

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

Consider a function defined in [-2,2] f (x)={{:({x}, -2 lle x lt -1),( |sgn x|, -1 le x le 1),( {-x}, 1 lt x le 2):}, where {.} denotes the fractional part function. The total number of points of discontinuity of f (x) for x in[-2,2] is:

Consider the function f(x)=[x{x}+1,0<=x<1 and 2-{x},1<=x<=2 Which of the following statement is/are correct? {x} denotes the fractional part function.

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is