Home
Class 12
MATHS
"If "f(x)+f(y)=f((x+y)/(1-xy))" for all ...

`"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and underset(xrarr0)lim(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).`

A

`f(sqrt(3))=(2pi)/3`

B

`f(sqrt(3))=(pi)/3`

C

`f'(-2)=2/5`

D

`f'(-2)=1/5`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0) (f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

f(x)+f(y)=f((x+y)/(1-xy)) ,for allx,yinR.(xy!=1),and lim_(x->0) f(x)/x=2.Findf(1/sqrt3)and f'(1).

If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/(1+(f (x))^(2)) then:

If f(x)+f(y)=f((x+y)/(1-xy))x>y in R,xy!=1,lim_(x rarr0)(f(x))/(x)=2. Find f(5),f'(-2)

Let f(x+y)=f(x).f(y) for all x, y in R and f(x)=1+x phi(x)log3. If lim_(xrarr0)phi(x)=1, then f'(x) is equal to

If f((x)/(y))=(f(x))/(f(y)) for all x,y in R,y!=0 and f(t)!=0, if t!=0 and f'(1)=3 then f(x) is

If f(x+y)=f(x)+f(y) -xy -1 for all x, y in R and f(1)=1 then f(n)=n, n in N is true if

If f(x+f(y))=f(x)+y for all x,y in R and f(1)=1, then find the value of f(10)/5,f(x) is not constant function.