Home
Class 12
MATHS
Let f(x) be a real valued function not i...

Let f(x) be a real valued function not identically zero such that `f(x+y^(2n+1))=f(x)+(f(y))^(2n+1), n epsilon N` and `x, y epsilo R`. If `f'(0)ge0`, then `f'(6)` is

A

0

B

1

C

-1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a real function not identically zero in z such the f(x+y^(z+1))=f(x)+(f(x))^(2+1),n in N and x,y in R. if f'(0)>=0 then 6int_(0)^(1)f(x)dx is equal to :

If f is a real valued function not identically zero,satisfying f(x+y)+f(x-y)=2f(x)*f(y) then f(x)

Let f(x) be a real valued function not identically zero satisfies the equation,f(x+y^(n))=f(x)+(f(y))^(n) for all real x&y and f'(0) 1) is an odd natural number.Find f(10).

Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f(a-y)+f(y)f(a-x), forall x,y in R , then for some real a,

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . If sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , then a=