Home
Class 12
MATHS
Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1...

Given `g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1)` and `u(x)=1/x+cos(1/(x^(2)))`
Let `f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x))`
If `lim+(xto2)f(x)=I`, then [I] (where [.] denotes the greatest integer function), is equal to :

A

0

B

1

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) The value of lim_(xtooo)f(x) is

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) If lim_(xto0)f(x)=2 , then the value of lamda is

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

The value of lim_(x rarr2)([2-x]+[x-2]-x) equals (where [.] denotes greatest integer function)