Home
Class 12
MATHS
underset (n rarr infty )(lim) [((n+1)(n+...

` underset (n rarr infty )(lim) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n)` is equal to

A

`27/(e^(2))`

B

`9/(e^(2))`

C

`3log3-2`

D

`18/(e^(4))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

The value of lim_(n rarr infty) (1)/(n) {(n+)(n+2)(n+3)…(n+n)}^(1//n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

underset( n rarr oo) ( "Lim") ( -3n + (-1)^(n))/(4n-(-1)^(n)) is

lim_(n rarr oo) ((sin(n))/(n^(2))+log((en+1)/(n+e))) ^(n) is equal to

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to