Home
Class 12
MATHS
If for x (0,1/4), the derivative of tan^...

If for `x (0,1/4),` the derivative of `tan^(-1)((6xsqrt(x))/(1-9x^3))` is `sqrt(x)dotg(x),` then `g(x)` equals: `(3x)/(1-9x^3)` (2) `3/(1+9x^3)` (3) `9/(1+9x^3)` (4) `(3xsqrt(x))/(1-9x^3)`

A

`(3x)/(1-9x^(3))`

B

`3/(1+9x^(3))`

C

`9/(1+9x^(3))`

D

`(3xsqrt(x))/(1-9x^(3))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

the derivative of (tan^(-1)(6x sqrt(x)))/(1-9x^(3)) is sqrt(x)g(x) then g(x) is:

If for x(0,(1)/(4)), the derivative of tan^(-1)((6x sqrt(x))/(1-9x^(3))) is sqrt(x)g(x), then g(x) equals: (1)(3x)/(1-9x^(3))(2)(3)/(1+9x^(3))(3)(9)/(1+9x^(3)) (4) (3x sqrt(x))/(1-9x^(3))

int_(1)^(2)(3x)/(9x^(2)-1)dx

If y=sin^(-1)(6xsqrt(1-9x^(2))),-1/(3sqrt2)ltxlt1/(3sqrt2) , then find (dy)/(dx) .

(3x+sqrt(9x^(2)-5))/(3x-sqrt(9x^(2)-5))=5

int (x^(1/3))/((1+x^(4/3))^(9))dx

int (x^(1/3))/((1+x^(4/3))^(9))dx