Home
Class 12
MATHS
Let f: R-> R be a positive increasing fu...

Let `f: R-> R` be a positive increasing function with `lim_(x->oo) f(3x)/f(x)=1` then `lim_(x->oo)f(2x)/f(x)=`

A

1

B

`2//3`

C

`3//2`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1 then lim_(x rarr oo)(f(2x))/(f(x))=

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1. Then lim_(x rarr oo)(f(2x))/(f(x))=(1)(2)/(3)(2)(3)/(2)(3)3(4)1

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to

lim_(x rarr oo) (1+f(x))^(1/f(x))

If f: R rightarrow (0, oo) is an increasing function such tha lim_(xrarroo) frac{f(7x)}{f(x)}=1 then the value of lim_(xrarroo) [frac{f(5x)}{f(x)}-1] (where [.] denote the greatest integer function) is

Let f be a positive differentiable function defined on (0,oo) and phi(x)=lim_(nrarroo) (f(x+(1)/(n))/f(x))^(n) . Then intlog_(e)(phi(x))dx=

Let f : R to R be a differentiable function satisfying f'(3) + f'(2) = 0 , Then lim_(x to 0) ((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^(1/x) is equal to

Let f(x) is a differentiable function everywhere and suppose lim_(x rarr oo)(f'(x)+3f(x))=12 then lim_(x rarr oo)f(x) is equal to