Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha and beta` be the distinct roots of `ax ^(2) +bx+c=0.` Then `lim _(xto alpha) (1- cos (ax ^(2) +bx+c))/((x-alpha)^(2))` is equal to-

A

`1/2(alpha-beta)^(2)`

B

`-(a^(2))/2(alpha-beta)^(2)`

C

`0`

D

`(a^(2))/2(alpha-beta)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 then underset(x to alpha)(Lt) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) equal to

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

If alpha is repeated roots of ax^(alpha)+bx+c=0 then lim_(x rarr a)(tan(ax^(2)+bx+c))/((x-alpha)^(2)) is

If alpha is a repeated root of ax^2+bx +c=0 , then lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2 is equal to

let alpha and beta be the roots of ax^(2)+bx+c then fin the value of (1)/(alpha)-(1)/(beta)