Home
Class 12
MATHS
If y=(x+sqrt(1+x^(2)))^(n), then (1+x^...

If `y=(x+sqrt(1+x^(2)))^(n)`, then `(1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)` is equal to -

A

`n^(2)y`

B

`-n^(2)y`

C

`-y`

D

`2x^(2)y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^(2)+(cos^(-1)x)^(2), then (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx) is equal to 4(b)3(c)1(d)0

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=(x+sqrt(1+x^(2)))^(n), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=n^(2)y

If y= sin (mlog (x+ sqrt( 1+x^(2)))),then (1+x^(2) ) (d^(2)y)/(dx^(2))+x(dy)/(dx) =

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2