Home
Class 12
MATHS
Let f(2)=4 and f'(2)=4. Then lim(x->2)(x...

Let `f(2)=4` and `f'(2)=4`. Then `lim_(x->2)(xf(2)-2f(x))/(x-2)` is equal to

A

2

B

-2

C

-4

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

If f(2)=2 and f'(2)=1, and then lim_(x to 2) (2x^(2)-4f(x))/(x-2) is equal to

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

Let f(2)=4,f'(2)=4 .Then Lt_(x rarr2)(xf(2)-2f(x))/(x-2) is :

lim_(x rarr2)(f(x)-f(2))/(x-2)=