Home
Class 12
MATHS
Let f:R to R and h:R to R be differentia...

Let `f:R to R` and `h:R to R` be differentiable functions such that `f(x)=x^(3)+3x+2,g(f(x))=x and h(g(x))=x` for all `x in R`. Then, h'(1) equals.

A

`g'(2)=1/15`

B

`h'(1)=666`

C

`h(0)=16`

D

`h(g(3))=36`

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(g(x)))=x for all x in R . Then, h'(1) equals.

Let f:R to R and g:R to R be differentiable functions such that f(x)=x^(3)+3x+2, g(f(x))=x"for all "x in R , Then, g'(2)=

Let f: R-> R, g:R->R and h:R->R be the differential functions such that f(x)=x^3+3x+2, g(f(x))=x and h(g(g(x)))=x, for all x in R. Then (a)g'(2)=1/15 (b)h'(1)=666 (c)h(0)=16 (d)h(g(3))=36

Let f be a differentiable function such that f(0)=e^(2) and f'(x)=2f(x) for all x in R If h(x)=f(f(x)) ,then h'(0) is equal to

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

Let f:R rarr R be a twice differentiable function such that f(x+pi)=f(x) and f'(x)+f(x)>=0 for all x in R. show that f(x)>=0 for all x in R .

Let f :R to R be a function such that f(x) = x^3 + x^2 f' (0) + xf'' (2) , x in R Then f(1) equals:

Let f:R rarr R and g:R rarr R be two functions such that fog(x)=sin x^(2) andgo f(x)=sin^(2)x Then,find f(x) and g(x)

Let f:R rarr R and g:R rarr R be two functions such that (gof)(x)=sin^(2)x and (fog)(x)=sin(x^(2)) Find f(x) and g(x)