Home
Class 12
MATHS
The largest value of non-negative intege...

The largest value of non-negative integer a for which `underset( x rarr 1 ) ( "lim"){ ( -ax+ sin ( x - 1) + a ) /(x + sin ( x - 1) -1)}^((1-x)/( 1- sqrt( x)) ) = ( 1)/( 4)` is

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

underset( x rarr 1 ) ("lim") (1-x)/( 1-x^(2))=

underset( x rarr 2) ( "lim") ( sin ( e^(x-2) - 1))/( ln ( x-1))=

Find underset( x rarr 0 ) ( "Lim") ( e^(sin x) -sin x -1)/( x^(2))

The largets value of non negative integer for which lim_(x rarr1)((-ax+sin(x-1)+a]1-sqrt(x))/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=(1)/(4)

The value of underset( x rarr 0 ) ( "Lim") ( sin ( ln ( 1+ x)))/( ln ( 1+ sin x )) is

Evaluate underset(x rarr 1 ) ("lim") arc sin (( 1- sqrt( x))/( 1-x))

If underset( x rarr oo) ( "lim") (( x^(2) + x+ 1)/(x+1) -ax -b) = 4 , then

underset( x rarr ( pi )/( 4))("Lim")(sqrt( 1- sqrt( sin x)))/(pi - 4x)

underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ") is equal to :

Evaluate : underset( x rarr0 ) ("lim") ( sqrt( ( 1+sin 3x))-1)/(ln ( 1+ tan 2x))