Home
Class 12
MATHS
For the function f (x) = {{:(x/(1+e^(1...

For the function `f (x) = {{:(x/(1+e^(1//x))", " x ne 0),(" 0 , "x = 0):}`, the derivative from the right, `f'(0^(+)) `= … and the derivative from the left, ` f'(0^(-))` = … .

Text Solution

Verified by Experts

The correct Answer is:
`f'(0^(+))=0,f'(0^(-))=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" "0", " x=0):} is not differentiable

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}