Home
Class 12
MATHS
If y={log(cosx)sinx}"{"log(sinx)cosx")"^...

If `y={log_(cosx)sinx}"{"log_(sinx)cosx")"^(-1)+s in^(-1)((2x)/(1+x^2)),` find `(dy)/(dx)a tx=pi/4dot`

Text Solution

Verified by Experts

The correct Answer is:
`(-8)/(log_(e)2+32/(16+pi^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

Find the derivative with respect to x of ((log)_(cosx)sinx)((log)_(sinx)cosx)^(-1)+sin^(-1)((2x)/(1+x^2)) at x=pi/4 .

If y=((log)_(cosx)sinx)((log)_(sinx)cosx)+sin^(-1)(2x)/(1+x^2) , then (dy)/(dx) at x=pi/2 is equal to.......

y= tan^(-1)((sinx)/(1+cosx)) Find dy/dx

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=(x)^(cosx)+(cosx)^(sinx) , find (dy)/(dx).

If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx) =

If y=x^(-1//2)+log_(5)x+(sinx)/(cosx)+2^(x), then find (dy)/(dx)

If y=(cosx-sinx)/(cosx+sinx)," then "(d^(2)y)/(dx^(2)):(dy)/(dx)=