Home
Class 12
MATHS
Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max...

Let `f(x)=x^(3)-x^(2)+x+1` and `g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1ltxle2):}` then

Text Solution

Verified by Experts

The correct Answer is:
continuous and differentiable on (0,2)-{1}
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f(x)=x^(3)-x^(2)-x+1 and g(x)={max{f(t);0<=t<=x},0<=x<=1,3-x,1<=x<=2 Discuss the continuity and differentiability of the function g(x) in the interval (0,2).

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

Let f(x) = -x^(3) + x^(2) - x + 1 and g(x) = {{:(min(f(t))",",0 le t le x and 0 le x le 1),(x - 1",",1 lt x le 2):} Then, the value of lim_(x rarr 1) g(g(x)) , is........ .

Let f(x)=x^(3)-x^(2)+x+1 and g(x) be a function defined by g(x)={{:(,"Max"{f(t):0le t le x},0 le x le 1),(,3-x,1 le x le 2):} Then, g(x) is

Let f(x)={:{(max{t^(3)-t^(2)+t+1,0letlex}",",0lexle1),(min{3-t,1lttlex}",",1ltxle2):} The function f(x),AAx in [0,2] is

Let f (x)= x^3+ x^2+ x+ 1 and g(x)=max[f(t)] , 0<=t<=x , 0<=x<=1 and f(x)=3-x , 1 < x<=2 then function g(x) is

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then