Home
Class 12
MATHS
If |cos^-1(1)/(n)|lt (pi)/(2), then li...

If `|cos^-1(1)/(n)|lt (pi)/(2)`, then
`lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}`

Text Solution

Verified by Experts

The correct Answer is:
`1-2//pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)

evaluate lim_ (n rarr oo) ((e ^ (n)) / (pi)) ^ ((1) / (n))

lim_(n to oo) 1/n =0 , lim_( n to oo) 1/n^2

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

f'(0) = lim_(n->oo) nf(1/n) and f(0)=0 Using this, find lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0