Home
Class 12
MATHS
Show that f(x)=tan^(-1)(sinx+cosx) is an...

Show that `f(x)=tan^(-1)(sinx+cosx)` is an increasing function on the interval `(0,\ pi//4)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that f(x)=tan^(-1)(sin x+cos x) is an increasing function on the interval (0,pi/4)

Show that f(x)=tan^(-1)(sin x+cos x) is a decreasing function on the interval on (pi/4,pi/2).

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

Show that f(x)=tan^(-1)(sin x+cos x) is decreasing function on the interval ((pi)/(4),(pi)/(2))

f(x) = e^(sinx+cosx) is an increasing function in

f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on the interval

f(x)=tan^(-1)(sinx+cosx),"then "f(x) is increasing in

Show that f(x)=tan x is an increasing function on (-pi/2,pi/2)

Show that f(x) = (x)/(sinx) is increasing on [0, (pi)/(2)]