Home
Class 12
MATHS
The function f(x)=4 sin^(3) x-6 sin^(2) ...

The function `f(x)=4 sin^(3) x-6 sin^(2) x+12 sin x+100` is strictly.

A

increasing in `(pi,(3pi)/(2))`

B

decreasing in `(pi/2,pi)`

C

decreasing in `[(-pi)/(2),(pi)/(2)]`

D

decreasing in `(0,pi/2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =4sin^(3)x-6sin^(2)x +12 sinx + 100 is strictly

The function f(t) = 4 sin^(3) t -6 sin^(2) t +12 sin t + 100 is strictly :

The function f(x) = sin|x| is

The function, f(x) =sin^(-1) (sin x) , is

The function f(x) = (x^(2)-4)/(sin x-2) is

sin ^ (2) 6x-sin ^ (2) 4x = sin2x sin10x

Find the intervals in which the function f(x) = sin x +cos x,x in [0, 2pi] is (i) strictly increasing, (ii) strictly decreasing.

If the function f(x)=(K sin x+2cos x)/(sin x+cos x) is strictly increasing for all values of x, then K 1K 2

The range of the function f(x)=sgn((sin^(2)x+2sin x+4)/(sin^(2)x+2sin x+3)) is

Find the range of the function f(x)=(sin^(2)x+sin x-1)/(sin^(2)x-sin x+2)