Home
Class 12
MATHS
The maximum value of sin x. cos x is :...

The maximum value of sin x. cos x is :

A

`1/4`

B

`1/2`

C

`sqrt2`

D

`2sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( f(x) = \sin x \cdot \cos x \), we can follow these steps: ### Step 1: Rewrite the function We can use the double angle identity for sine: \[ f(x) = \sin x \cdot \cos x = \frac{1}{2} \sin(2x) \] This transformation helps us to analyze the function more easily. ### Step 2: Find the derivative To find the maximum value, we need to find the critical points. We differentiate \( f(x) \): \[ f'(x) = \frac{1}{2} \cdot 2 \cos(2x) = \cos(2x) \] ### Step 3: Set the derivative to zero To find the critical points, we set the derivative equal to zero: \[ \cos(2x) = 0 \] ### Step 4: Solve for \( x \) The cosine function is zero at odd multiples of \( \frac{\pi}{2} \): \[ 2x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] Thus, \[ x = \frac{\pi}{4} + \frac{n\pi}{2} \] The first critical point in the interval \( [0, 2\pi] \) is \( x = \frac{\pi}{4} \). ### Step 5: Determine if it's a maximum or minimum To confirm whether this point is a maximum, we can use the second derivative test. We find the second derivative: \[ f''(x) = -2 \sin(2x) \] Now, we evaluate the second derivative at \( x = \frac{\pi}{4} \): \[ f''\left(\frac{\pi}{4}\right) = -2 \sin\left(2 \cdot \frac{\pi}{4}\right) = -2 \sin\left(\frac{\pi}{2}\right) = -2 \cdot 1 = -2 \] Since \( f''\left(\frac{\pi}{4}\right) < 0 \), this indicates that \( x = \frac{\pi}{4} \) is indeed a maximum. ### Step 6: Calculate the maximum value Now we can find the maximum value of \( f(x) \): \[ f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2} \] ### Conclusion The maximum value of \( \sin x \cdot \cos x \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of 8sin x+6cos x=

The maximum value of sin(cos x) is equal to

Maximum value of sin(cos x) is-

what is the maximum value of sin2x cos2x?

The maximum value of f(x)=sin x+cos2x when in[0,2 pi] is

If 3cos x+4cos y=5, then the maximum value of 3sin x+4sin y is

The maximum value of sin^(2)x cos^(3)x is