Home
Class 12
MATHS
The function f(x)=(2x^2-1)/x^4, x gt 0de...

The function `f(x)=(2x^2-1)/x^4, x gt 0`decreases in the interval

Text Solution

Verified by Experts

The correct Answer is:
`x in (1,oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=(2x^(2)-1)/(x^(4)),x>0 decreases in the interval

The function f(x)=2log(x-2)-x^(2)+4x+1 increases in the interval

The function f(x) = tan ^(-1)x -x decreases in the interval

The function f(x)=tan^(-1)x-x decreases in the interval

The function f(x)=tan^(-1)x-x decreases in the interval.

The function f(x) = 2x^(3) + 3x^(2) -12 x + 1 decreases in the interval

Consider the following statements : 1. The function f(x)=x^(2)+2cosx is increasing in the interval (0,pi) 2. The function f(x)=1n(sqrt(1+x^(2)-x)) is decreasing in the interval (-oo,oo) Which of the above statements is/ are correct ?

Consider the following statements I.The function f(x)=x^(2)+2cos x is increasing in the interval (0,pi). II.The function f(x)=ln(sqrt(1+x^(2))-x) is decreasing in the interval (-oo,oo). Which of the above statement(s) is/are correct?