Home
Class 12
MATHS
The curves ax^(2)+by^(2)=1 and Ax^(2)+B ...

The curves `ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1` intersect orthogonally, then

A

`1/a+1/A=1/b+1/B`

B

`1/a-1/A=1/b-1/B`

C

`1/a+1/b=1/B-1/A`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

If the curves 2x^(2)+3y^(2)=6 and ax^(2)+4y^(2)=4 intersect orthogonally, then a =

Show the condition that the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 should intersect orthogonally is (1)/(a)-(1)/(b)=(1)/(a')-(a)/(b)

Show that it the curves ax^(2) +by^(2)=1 " and " Ax^(2) +By^(2) =1 are orthogonal then ab(A-B)=AB(a-b).

Prove that the curve 2x^(2)+3y^(2)=1 and x^(2)-y^(2)=(1)/(12) intersect orthogonally.

If the curve ax^(2) + 3y^(2) = 1 and 2x^2 + 6y^2 = 1 cut each other orthogonally then the value of 2a :

If the curves ax^(2)+by^(2)=1 and cx^(2)+dy^(2)=1 intersect at right angles then show that (1)/(a)-(1)/(b)=(1)/(d)-(1)/(d)

Find the condition for the two concentric ellipses a_(1)x^(2)+b_(1)y^(2)=1 and a_(2)x^(2)+b_(2)y^(2)=1 to intersect orthogonally.