Home
Class 12
MATHS
Let f(x)={:{(6","xle1),(7-x","xgt1):} 't...

Let `f(x)={:{(6","xle1),(7-x","xgt1):}` 'then for f(x) at x=1 discuss maxima and minima.

A

a point of local maxima

B

a point of local minima

C

neither a point of local minima nor maxima

D

a statinonary point

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) = {:{(1+x",",xle2),(5-x,","xgt2):} is

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

If f(x)={(x","xle1,),(x^2+bx+c",",xgt1):} then find the values of b and c if f(x) is diferentiable at x=1.

If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):} , then int_(0)^(2)f(x)dx is

Let f(x) = {(3 , ,xlt1),(4-x,,xgt1):}, Investigate x=1 for the existence of a local maxima/minima.

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):} If lim_(xrarr2)f(x) exists then find the value of a.

if f(x) = {{:(x+2",",xle1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.