Home
Class 12
MATHS
The number of critical points of f(x)=ma...

The number of critical points of `f(x)=max{sinx,cosx},AAx in(-2pi,2pi),` is

A

5

B

7

C

4

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find critical points of f(x) =max (sinx cosx) AA , X in (0, 2pi) .

The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

f(x)=max(sin x,cos x),x varepsilon R. Then number of critical points varepsilon(-2 pi,2 pi) is/are (i) 5( ii) 7( iii) 9 (iv) none of these

In (0, 2pi) , the total number of points where f(x)=max.{sin x, cos x, 1 - cos x} is not differentiable , are equal to

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

Sketch the graph of y = max (sinx, cosx), AA x in (-pi,(3pi)/(2)).

The number of distinct real roots of |[sinx,cosx,cosx],[cosx,sinx,cosx],[cosx,cosx,sinx]|=0 in the interval pi//4lt=xlt=pi//4 is 0 b. 2 c. 1 d. 3

Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda is the number of points at which f(x) is non - differentiable , then value of (lamda^3)/5 is