Home
Class 12
MATHS
The local maximum value of f(x)=(sin^(2)...

The local maximum value of `f(x)=(sin^(2)x)/(sin^(2)x-sin^(2)a) (0 lt a lt pi//2)` is :

A

0

B

`sec^(2) a`

C

`cosec^(2) a`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

The maximum value of f(x) =2 sin x + sin 2x , in the interval [0, (3)/(2)pi] is

Find the point of local maxima or local minima of the function f(x) = (sin^(4) x + cos^(4) x) " in " 0 lt x lt (pi)/(2)

f'(sin^(2)x)lt f'(cos^(2)x) for x in

The maximum and minimum values of f(x)=secx+logcos^(2)x,0 lt x lt 2pi are respectively

Find the maximum and minimum value of f(x)=sin x+(1)/(2)cos2x in [0,(pi)/(2)]

Find the maximum and minimum values of f(x)=sin x+(1)/(2)cos2x in [0,pi/2]

Maximum and minimum value of f(x) = max (sin t), 0 lt t lt x le 0 x le 2pi are