Home
Class 12
MATHS
f(x)=int0^x(e^t-1)(t-1)(sint-cost)sin t ...

`f(x)=int_0^x(e^t-1)(t-1)(sint-cost)sin t dt ,AAx in (-pi/2, 2pi),` then `f(x)` is decreasing in :

A

`(-pi/2,0) cup (pi/4,1) cup (pi,pi/4)`

B

`(-pi/2,pi/4) cup (1, pi) cup ((5pi)/(4), 2pi)`

C

`(pi/4,1) cup (pi,(5pi)/(4))`

D

`(0,pi/4) cup (1, pi) cup ((5pi)/(4), 2pi)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=int_(0)^(x)(e^(t)-1)(t-1)(sin t-cos t)sin tdt,AA x in(-(pi)/(2),2 pi) then f(x) is decreasing in :

The function f(x)=int_(0)^(x) log _(|sin t|)(sin t + (1)/(2)) dt , where x in (0,2pi) , then f(x) strictly increases in the interval

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

If f(x)=e^(x)+int_(0)^(sin x)(e^(t)dt)/(cos^(2)x+2t sin x-t^(2))AA x in(-(pi)/(2),(pi)/(2)),then

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

If f(x)=int_(x)^(x+1) (e^-(t^2)) dt, then the interval in which f(x) is decreasing is

f(x) satisfies the relation f(x)-lambda int_(0)^( pi/2)sin x*cos tf(t)dt=sin x If lambda>2 then f(x) decreases in

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval