Home
Class 12
MATHS
If are positive integers, maximum valu...

If are positive integers, maximum value of `x^(m) (a-x)^(n)" in (0,a) is :"`

A

`m^(m) (a-m)^(n)`

B

`m^(m) n^(n)`

C

`(m^(m) n^(n) a^(m+n))/((m+n)^(m+n))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b are positive integers, maximum value of bg_(e) (x-a)^(a) (x-b)^(b) occurs at x =

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

The system of linear equations 5x+my=10 and 4x+ny=8 have infinitely many solutions,where m and n are positive integers.Then,the minimum possible value of (m+n) is equal to

Find the maximum value of x^(m)y^(n),m,n>0 such that x+y=a.

If m and n are +ve integers and m>n and if (1+x)^(m+n)(1-x)^(m-n) is expanded as a polynomial in x ,then the coefficient of x^(2) is

If n is a positive odd integer,then int|x^(n)|dx=

If and n are positive integers,then lim_(x rarr0)((cos x)^((m)/(m))-(cos x)^((pi)/(n)))/(x^(2)) equal to

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

If (m)=64, where m and n are positive integers,find the value of n)^(mn)..