Home
Class 12
MATHS
f: (0,oo) to (-pi/2,pi/2)" be defined as...

`f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x)`.
The graph of y = f (x) is best represented by

A

B

C

D

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . If x_(1),x_(2) and x_(3) are the points at which g(x) =[f (x)] is discontinuous (where, [.] denotes the greatest integer function), then (x_(1)+x_(2)+x_(3))" is :"

Consider f:(0,oo)rarr(-(pi)/(2),(pi)/(2)), defined as f(x)=tan^(-1)((log_(e)x)/((log_(e)x)^(2)+1))* The about function can be classified as

f:(-(pi)/(2),(pi)/(2))rarr(-oo,oo) defined by f(x)=tan x is

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Let f(0,oo) rarr (-oo,oo) be defined as f(x)=e^(x)+ln x and g=f^(-1) , then find the g'(e) .

Let f:(-1,oo) rarr R be defined by f(0)=1 and f(x)=1/x log_(e)(1+x), x !=0 . Then the function f:

Let f:R rarr[0,(pi)/(2)) be defined by f(x)=tan^(-1)(x^(2)+x+a)* Then the set of values of a for which f is onto is (a)(0,oo)(b)[2,1](c)[(1)/(4),oo](d) none of these

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

Let f:R rarr [0, (pi)/(2)) be a function defined by f(x)=tan^(-1)(x^(2)+x+a) . If f is onto, then a is equal to