Home
Class 12
MATHS
Given a function f:[0,4]toR is different...

Given a function `f:[0,4]toR` is differentiable ,then prove that for some `alpha,beta epsilon(0,2), int_(0)^(4)f(t)dt=2alphaf(alpha^(2))+2betaf(beta^(2))`.

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[0,4]rarr R be a differentiable function then for some alpha,beta in (0,2)int_(0)^(4)f(t)dt

If the function f:[0,8]toR is differentiable, then for 0ltbetalt1 and 0lt alpha lt 2, int_(0)^(8)f(t)dt is equal to

If the function f:[0,8]rarr R is differentiable then for 0

If the function f:[0,16]rarr R is differentiable. If 0

Let y=f(x),f:R rarr R be an odd differentiable function such that f'(x)>0 and g(alpha,beta)=sin^(8)alpha+cos^(8)beta+2-4sin^(2)alpha cos^(2)beta If f'(g(alpha,beta))=0 then sin^(2)alpha+sin^(2)beta is equal to

If alpha,beta are roots of the equation ax^(2)-bx-c=0, then alpha^(2)-alpha beta+beta^(2) is equal to-

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

Let F:[3,5] rarr R be a twice differentiable function on (3,5) such that F(x)= e^(-x) int_(3)^(x) (3t^(2)+2t+4F'(t)) dt . If F'(4)= (alpha e^(beta)-224)/((e^(beta)-4)^(2)) , then alpha+beta is equal to _____