Home
Class 12
MATHS
The maximum value of the function f(x)=...

The maximum value of the function `f(x)=3x^(3)-18x^(2)+27x-40` on the set `S={x in R: x^(2)+30 le 11x}` is:

A

`-122`

B

`-222`

C

`222`

D

`122`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = 3x^3 - 18x^2 + 27x - 40 \) on the set \( S = \{ x \in \mathbb{R} : x^2 + 30 \leq 11x \} \), we will follow these steps: ### Step 1: Determine the set \( S \) We start with the inequality: \[ x^2 + 30 \leq 11x \] Rearranging gives: \[ x^2 - 11x + 30 \leq 0 \] Next, we factor the quadratic: \[ (x - 5)(x - 6) \leq 0 \] To find the intervals where this inequality holds, we identify the roots \( x = 5 \) and \( x = 6 \). ### Step 2: Analyze the sign of the quadratic We can test intervals around the roots: - For \( x < 5 \): Choose \( x = 4 \) → \( (4 - 5)(4 - 6) = (-1)(-2) = 2 \) (positive) - For \( 5 < x < 6 \): Choose \( x = 5.5 \) → \( (5.5 - 5)(5.5 - 6) = (0.5)(-0.5) = -0.25 \) (negative) - For \( x > 6 \): Choose \( x = 7 \) → \( (7 - 5)(7 - 6) = (2)(1) = 2 \) (positive) Thus, the quadratic is negative or zero in the interval: \[ S = [5, 6] \] ### Step 3: Find the critical points of \( f(x) \) Next, we differentiate \( f(x) \): \[ f'(x) = 9x^2 - 36x + 27 \] Setting the derivative to zero to find critical points: \[ 9x^2 - 36x + 27 = 0 \] Dividing through by 9: \[ x^2 - 4x + 3 = 0 \] Factoring gives: \[ (x - 1)(x - 3) = 0 \] Thus, the critical points are \( x = 1 \) and \( x = 3 \). ### Step 4: Evaluate the function at the endpoints of \( S \) Since \( S = [5, 6] \), we evaluate \( f(x) \) at the endpoints: 1. At \( x = 5 \): \[ f(5) = 3(5^3) - 18(5^2) + 27(5) - 40 \] \[ = 3(125) - 18(25) + 135 - 40 \] \[ = 375 - 450 + 135 - 40 = 20 \] 2. At \( x = 6 \): \[ f(6) = 3(6^3) - 18(6^2) + 27(6) - 40 \] \[ = 3(216) - 18(36) + 162 - 40 \] \[ = 648 - 648 + 162 - 40 = 122 \] ### Step 5: Determine the maximum value Comparing the values: - \( f(5) = 20 \) - \( f(6) = 122 \) The maximum value of \( f(x) \) on the set \( S \) is: \[ \boxed{122} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of the function f(x)=5+9x-18x^(2)

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set a={x|x^(2)+20le9x} is

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

The maximum value of the function ƒ(x) = e^x + x ln x on the interval 1 le x le 2 is

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.

The function f(x)=x^(3)-(15)/(2)x^(2)+18x+2 increases in

If x satisfies the condition f(x)={x:x^(2)+30<=11x} then maximum value of function f(x)=3x^(3)-18x^(2)-27x-40 is equal to (A)-122(B)122(C)222(D)-222

The function f (x) = 4x ^(3) - 18x ^(2) + 27 x + 49 is increasing in :