Home
Class 12
MATHS
Find the sum of all possible integral va...

Find the sum of all possible integral values of in [1,100] for which the function `f(x)=2x^(3)-3(2+alpha)x^(2)` has exactly one local maximum and one local minimum.

Text Solution

Verified by Experts

The correct Answer is:
5050
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a , if

Let S be the set of real values of parameter lamda for which the equation f(x) = 2x^(3)-3(2+lamda)x^(2)+12lamda x has exactly one local maximum and exactly one local minimum. Then S is a subset of

The set of all the possible values of a for which the function f(x)=5+(a-2)x+(a-1)x^(2)-x^(3) has a local minimum value at some x 1 is

Let f(x)=x^(3)-3x^(2)+6 find the point at which f(x) assumes local maximum and local minimum.

If the function f(x) = x^(2) + alpha//x has a local minimum at x=2, then the value of alpha is

Let f(x)=-sin^(3)x+3sin^(2)x+5 on [0,(pi)/(2)]. Find the local maximum and local minimum of f(x)

Find the points of local maxima,local minima and the points of inflection of the function f(x)=x^(5)-5x^(4)+5x^(3)-1. Also,find the corresponding local maximum and local minimum values.

Find the points of local maxima,local minima and the points of inflection of the function f(x)=x^(5)-5x^(4)+5x^(3)-1. Also,find the corresponding local maximum and local minimum values