Home
Class 12
MATHS
For x epsilon(0,(5pi)/2), definite f(x)...

For `x epsilon(0,(5pi)/2)`, definite `f(x)=int_(0)^(x)sqrt(t) sin t dt`. Then `f` has

A

local minimum at `pi and 2pi`

B

local minimum at `pi` and local maximum at

C

local maximum at `pi` and local minimum at

D

local maximum at `pi and 2pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x)t sin t dt , then f'(x) is

For x in (0 , (5pi)/(2)) define f(x) = underset(0)overset(x)(int) sqrtt sin t dt Then has :

If f(x)=int_(0)^(x)tf(t)dt+2, then

int_(0)^(x)f(t)dt=x cos pi x then f(3)=

If f(x)=int_(0)^(x)(:t:)(sin x-sin t)backslash dt then

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to