Home
Class 12
MATHS
If u=sqrt(a ^(2) cos ^(2) theta+b ^(2) s...

If `u=sqrt(a ^(2) cos ^(2) theta+b ^(2) sin ^(2) theta)+ sqrt( a^(2) sin ^(2) theta+b ^(2) cos ^(2) theta),` then the difference between the maximum and minimum values of `u^(2)` is-

A

`2(a^(2)+b^(2))`

B

`2sqrt(a^(2)+b^(2))`

C

`(a+b)^(2)`

D

`(a-b)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta) then the difference between maximum and minimum values of u^(2) is

u=sqrt(a^(2)cos^(2)theta+b^(2)sin^(2)theta)+sqrt(a^(2)sin^(2)theta+b^(2)cos^(2)theta^(2)) then the difference between the maximum and minimum values of u^(2) is given by : (a) (a-b)^(2) (b) 2sqrt(a^(2)+b^(2))(c)(a+b)^(2) (d) 2(a^(2)+b^(2))

If u=a^2cos^2theta+b^2sin^2theta+a^2sin^2theta+b^2cos^2theta then the difference between the maximum and minimum values of u^2 is given by- (a^2+b^2) b. 2sqrt(a^2+b^2) c. (a+b)^2 d. (a-b)^2

Show that the maximum and minimum values of sqrt(a^(2)cos^(2)theta + b^(2)sin^(2) theta) + sqrt(a^(2)sin^(2)theta + b^(2)cos^(2)theta) are sqrt(2(a^(2) +b^(2)) and a + b respectively.

If : sin^(4)theta+cos^(4)theta+sin^(2)theta*cos^(2)theta=1-u^(2), "then" : u=

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

If u = cot^(-1) sqrt(cos 2theta) - tan^(-1) sqrt(cos 2theta) prove that sin u = tan^(2) theta . .