Home
Class 12
MATHS
let f(x)=a0+a1x^2+a2x^4+............anx^...

let `f(x)=a_0+a_1x^2+a_2x^4+............a_nx^(2n)` where `0< a_0 < a_1 < a_3 ............< a_n` then `f(x)` has

A

neither a maximum nor a minimum

B

only one maximum

C

only one minimum

D

only one maximum and only one minimum

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

let f(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+.........a_(n)x^(2n) where 0

Let n be a positive integer, such that (1 + x + x^2)^n=a_0 +a_1x+ a_2 x^2+a_3 x^3+......a_(2n) x^(2n), Answer the following question: The value of a when (0 leq r leq n) is (A) a_(2n-r) (B) a_(n-r) (C) a_(2n) (D) n. a_(2n-1)

if (1+x+x^2)^(10)(1-x+x^2)^(10)=a_0+a_x+a_2x^2+a_3x^3+...........+a_(40)x^(40) then a_1+a_3+.....+a_(39) is equal to

If (1+x+2x^2)^20=a_0 + a_1x+a_2x^2+....................+a_40x^40 then a_0+a_2+a_4+.............+a_38 is

If (1+x)^n = a_0+a_1x+a_2x^2+......+a_nx^n , find the sum a_0+a_4 + a_8 + a_12 + ….. .

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2