Home
Class 12
MATHS
The maximum value of the function f(x)=2...

The maximum value of the function `f(x)=2x^(3)-15x^(2)+36x-48` on the set `a={x|x^(2)+20le9x}` is

Text Solution

Verified by Experts

The correct Answer is:
7
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set A={x|x^(2)|20<=9x} is

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

If f(x)=2x^(3)-21x^(2)+36x-20 , then

If f(x)=2x^(3)-21 x^(2)+36x-20 , then

The real function f(x) =2x^(3)-3x^(2)-36x +7 is:

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.

Maximum value of f(x)=2x^(3)-9x^(2)+24x-15 is