Home
Class 12
MATHS
Determine the points of maxima and minim...

Determine the points of maxima and minima of
the function, `f(x)=(1)/(8)logx-bx+x^(2),xgt0` when `bge0` is a constant.

Text Solution

Verified by Experts

The correct Answer is:
`"Mamima at x"=(b-sqrt(b^(2)-1))/(4)" & minima at x"=1/4 (b+sqrt(b^(2)-1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Determine the point of maxima and minima of the function f(x)=(1)/(8)log_(e)x-bx+x^(2),x>0, where b>=0 is constant.

Find the points of local maxima and minima of the function f(x)=x^(2)-4x .

Find all the points of local maxima and minima of the function f(x)=x^(3)-6x^(2)+9x-8

Find the points of local maxima and local minima of the function f(x)=2x^(3)-3x^(2)-12x+8 .

Find the points of local maxima/minima of function f(x) = x ln x

Find all the points of local maxima and local minima of the function f(x)=(x-1)^(3)(x+1)^(2)

Find the maxima and minima of the function y=x(x-1)^(2),0<=x<=2

Find all the points of local maxima and local minima of the function f(x)=x^(3)-6x^(2)+12x-8

Find all the points of local maxima and local minima of the function f(x)=x^(3)-6x^(2)+12x-8

Find the points of local maxima/minima of function f(x) = - (x - 1)^(3) (x + 1)^(2)