Home
Class 12
MATHS
If vecr.veca=0,vecr.vecb=0andvecr.vecc=0...

If `vecr.veca=0,vecr.vecb=0andvecr.vecc=0` for some non-zero vector `vecr`, then the value of `veca.(vecbxxvecc)` is…… .

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If vecX.vecA=0, vecX.vecB=0,vecX.vecC=0 for some non-zero vector, vecX , then [vecAvecBvecC]=0

Assertion: If vecr.veca=0, vecr.vecb=0, vecr.vecc=0 for some non zero vector vecr e then veca,vecb,vecc are coplanar vectors. Reason : If veca,vecb,vecc are coplanar then veca+vecb+vecc=0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc0 is (A) |[veca vecb vecc]| (B) |vecr| (C) |[veca vecb vecr]vecr| (D) none of these

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

Let veca=-hati-hatk, vecb=-hati+hatj and vecc=hati+2hatj+3hatk be three given vectors. If vecr is a vector such that vecrxxvecb=veccxxvecb and vecr.veca=0 , then the value of vecr.vecb is

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is