Home
Class 12
MATHS
The value of the expression |veca xx vec...

The value of the expression `|veca xx vecb|^(2) + (veca.vecb)^(2)` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is

Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2) = |(veca.veca)/(veca. vecb)(veca.vecb)/(vecb.vecb)|

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

For any three vectors veca, vecb and vecc write value of the following veca xx (vecb + vecc) + vecb xx (vecc + veca)+ vecc xx (veca + vecb)

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals