Home
Class 12
MATHS
The formula (veca + vecb)^(2)= a^(-2) + ...

The formula `(veca + vecb)^(2)= a^(-2) + vecb^(2) + 2veca xx vecb` valid for non zero vectors `veca` and `vecb`.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The formula (veca+vecb)^(2)=vec(a^(2))+vec(b^(2))+2vecaxxvecb is valid for non-zero vectors vecaandvecb .

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb .

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2) = |(veca.veca)/(veca. vecb)(veca.vecb)/(vecb.vecb)|

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

The base vectors veca_(1), veca_(2) and veca_(3) are given in terms of base vectors vecb_(1), vecb_(2) and vecb_(3) as veca_(1) = 2vecb_(1)+3vecb_(2)-vecb_(3) , veca-(2)=vecb_(1)-2vecb_(2)+2vecb_(3) and veca_(3) =-2vecb_(1) + vecb_(2)-2vecb_(3) , if vecF = 3vecb_(1)-vecb_(2)+2vecb_(3) , then vector vecF in terms of veca_(1), veca_(2) and veca_(3) is

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

Let veca=hati+2hatj and vecb=2hati+hatj. Is |veca|=|vecb" Are the vectors veca and vecb equal?.