Home
Class 12
MATHS
Let veca = hati + hatj + hatk and let ve...

Let `veca = hati + hatj + hatk` and let `vecr` be a variable vector such that `vecr.hati, vecr.hatj` and `vecr.hatk` are posititve integers. If `vecr.veca le 12`, then the total number of such vectors is:

A

`""_(12)C_(9)-1`

B

`""_(12)C_(3)`

C

`""_(12)C_(8)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vecp=hati+hatj+hatk are vecr be a variable vector such that vecr. hati , vecr. hatj and vecr. hatk are even natural numbers. If vecr.vecp le 20 , then the numbers. If vecr.vecple20 then the number of values of vecr is

For any vector vecr , ( vecr.hati) hati + ( vecr.hatj) hatj + ( vecr.hatk) hatk =

If hati, hatj, hatk are unit orthonormal vectors and veca is a vector, If veca xx vecr = hatj , then veca.vecr :

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecd and vecr.veca =0 then find the value of vecr .vecb .

For any vector vecr, (vecr.hati) ^(2) + (vecr.hatj)^(2) + ( vecr.hatk)^(2) is equal to

Find the angle between the planes vecr.(hati+hatj)=1 and vecr.(hati+hatk)=3 .

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If the planes vecr.(hati+hatj+hatk)=1, vecr.(hati+2ahatj+hatk)=2 and vecr. (ahati+a^(2)hatj+hatk)=3 intersect in a line, then the possible number of real values of a is

Let veca=-hati-hatk, vecb=-hati+hatj and vecc=hati+2hatj+3hatk be three given vectors. If vecr is a vector such that vecrxxvecb=veccxxvecb and vecr.veca=0 , then the value of vecr.vecb is

Let vecp2hati+hatj-2hatk, vecq=hati+hatj. If vecr is a vector such that vecp. Vecr=|vecr|, |vecr-vecp|=2sqrt2 and the angle between vecp xx vecq and vecr is (pi)/(6) , then the value of |(vecpxxvecq)xx vecr| is equal to