Home
Class 12
MATHS
veca and vecc are unit collinear vectors...

`veca` and `vecc` are unit collinear vectors and `|vecb|=6`, then `vecb-3vecc = lambda veca`, if `lambda` is:

A

`-9,3`

B

9,3

C

`3,-3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information and work step by step. ### Step 1: Understand the Given Information We have two unit collinear vectors, \(\vec{a}\) and \(\vec{c}\), and a vector \(\vec{b}\) such that \(|\vec{b}| = 6\). The equation given is: \[ \vec{b} - 3\vec{c} = \lambda \vec{a} \] ### Step 2: Rearranging the Equation Rearranging the equation gives us: \[ \vec{b} = \lambda \vec{a} + 3\vec{c} \] ### Step 3: Squaring Both Sides To find \(\lambda\), we will take the dot product of both sides with themselves: \[ \vec{b} \cdot \vec{b} = (\lambda \vec{a} + 3\vec{c}) \cdot (\lambda \vec{a} + 3\vec{c}) \] ### Step 4: Expanding the Right Side Expanding the right-hand side using the distributive property of the dot product: \[ |\vec{b}|^2 = \lambda^2 (\vec{a} \cdot \vec{a}) + 2\lambda \cdot 3 (\vec{a} \cdot \vec{c}) + 9 (\vec{c} \cdot \vec{c}) \] ### Step 5: Substitute Known Values We know that \(|\vec{b}| = 6\), so: \[ |\vec{b}|^2 = 36 \] Also, since \(\vec{a}\) and \(\vec{c}\) are unit vectors: \[ \vec{a} \cdot \vec{a} = 1 \quad \text{and} \quad \vec{c} \cdot \vec{c} = 1 \] Thus, we can substitute these values into the equation: \[ 36 = \lambda^2 + 6\lambda(\vec{a} \cdot \vec{c}) + 9 \] ### Step 6: Simplifying the Equation Rearranging gives us: \[ 36 = \lambda^2 + 6\lambda(\vec{a} \cdot \vec{c}) + 9 \] Subtracting 9 from both sides: \[ 27 = \lambda^2 + 6\lambda(\vec{a} \cdot \vec{c}) \] ### Step 7: Finding \(\vec{a} \cdot \vec{c}\) Since \(\vec{a}\) and \(\vec{c}\) are collinear, the angle between them is 0 degrees, thus: \[ \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos(0) = 1 \cdot 1 \cdot 1 = 1 \] ### Step 8: Substitute Back into the Equation Substituting \(\vec{a} \cdot \vec{c} = 1\) back into the equation: \[ 27 = \lambda^2 + 6\lambda \] ### Step 9: Rearranging into Standard Form Rearranging gives us: \[ \lambda^2 + 6\lambda - 27 = 0 \] ### Step 10: Solving the Quadratic Equation We can solve this quadratic equation using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = 6\), and \(c = -27\): \[ \lambda = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot (-27)}}{2 \cdot 1} \] \[ = \frac{-6 \pm \sqrt{36 + 108}}{2} \] \[ = \frac{-6 \pm \sqrt{144}}{2} \] \[ = \frac{-6 \pm 12}{2} \] ### Step 11: Finding the Values of \(\lambda\) Calculating the two possible values: 1. \(\lambda = \frac{6}{2} = 3\) 2. \(\lambda = \frac{-18}{2} = -9\) Thus, the possible values of \(\lambda\) are \(3\) and \(-9\). ### Final Answer The values of \(\lambda\) are \(3\) and \(-9\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

Let veca, vecb, vecc be three vectors such that a!=0 and veca xx vecb = 2veca xx vecc, |veca| = |vecc| = 1, |vecb| = 4 and |vecb xx vecc| = sqrt15. If vecb-2 vecc = lambda veca, then lambda is

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecc is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca and vecb are two unit vectors perpenicualar to each other and vecc= lambda_(1)veca+ lambda_2 vecb+ lambda_(3)(vecaxx vecb), then which of the following is (are) true ?

Let veca vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca xx veca + vecbxxvecc + vecc + veca = vec0 then find the value of lambda .

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc = 0 and lambda = veca.vecb + vecb.vecc+vecc.veca and d = veca xx vecb + vecb xx vecc + vecc xx veca , then (lambda,vecd) is