Home
Class 12
MATHS
If three vectors veca, vecb,vecc are suc...

If three vectors `veca, vecb,vecc` are such that `veca ne 0` and `veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4` and the angle between `vecb` and `vecc` is `cos^(-1)(1//4)`, then `vecb-2vecc= lambda veca` where `lambda` is equal to:

A

4

B

`-4`

C

2

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|= and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecc is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Let veca, vecb, vecc be three vectors such that a!=0 and veca xx vecb = 2veca xx vecc, |veca| = |vecc| = 1, |vecb| = 4 and |vecb xx vecc| = sqrt15. If vecb-2 vecc = lambda veca, then lambda is

Let veca,vecb,vecc be three vectors such that veca ne vec0 and veca xx vecb=2veca xx vecc, |veca|=|vecc|=1,|vecb|=4 and |vecbxxvecc|=sqrt(15) . If vecb-2vecc=lambdaveca , then |lambda| is equal to :

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca and vecb are two vectors such that |veca|=1, |vecb|=4, veca.vecb=2 . If vecc=(2veca xx vecb)-3vecb , then the angle between veca and vecc is

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=