Home
Class 12
MATHS
Given any vector, vecr,|vecr xx hati|^(2...

Given any vector, `vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr xx hatk|^(2)` equals to:

A

`4|vecr|^(2)`

B

`|vecr|^(2)`

C

`2|vecr|^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

For any vector vecr, (vecr.hati) ^(2) + (vecr.hatj)^(2) + ( vecr.hatk)^(2) is equal to

For any vector vecr , ( vecr.hati) hati + ( vecr.hatj) hatj + ( vecr.hatk) hatk =

The solution vectors vecr of the equation vecr xx hati=hatj+hatk and vecr xx hatj=hatk+hatj represent two straight lines which are :

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecd and vecr.veca =0 then find the value of vecr .vecb .

Let vecp=hati+hatj+hatk are vecr be a variable vector such that vecr. hati , vecr. hatj and vecr. hatk are even natural numbers. If vecr.vecp le 20 , then the numbers. If vecr.vecple20 then the number of values of vecr is

If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = vecb xx vec a , vecr xx vec b = veca xx vec b , then what is the value of (vec r)/(|vec r|)

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

Let veca=hati+2hatj-hatk, vecb=hati-hatj and vecc=hati-hatj-hatk be three given vectors. If vecr is a vector such that vecr xx veca=vecc xx veca and vecr*vecb=0 , then vecr*veca is equal to _______.