Home
Class 12
MATHS
Let O be the centre of a regular pentago...

Let O be the centre of a regular pentagon ABCDE and `vec(OA) = veca`, then `vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA)` is equals:

A

0

B

`4veca`

C

`5veca`

D

`6veca`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

Let O be the centre of a regular hexagon ABCDEF. Find the sum of the vectors vec OA,vec OB,vec OC,vec OD,vec OE and vec OF .

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

ABCDE is a pentagon prove that vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0

In a regular hexagon ABCDEF,vec AB=a,vec BC=b and vec CD=c. Then ,vec AE=

In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB) is equal to:

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

Let ABCDEF be a regular hexagon and vec AB=vec a,vec BC=vec b,vec CD=vec c then vec AE is

Assertion A : If A, B, C, D are four points on a semi-circular arc with centre at 'O' such that |vec(AB)| = |vec(BC)|=|vec(CD)| , then vec(AB) +vec(AC) +vec(AD) =4 vec(AO) +vec(OB) +vec(OC) Reason R : Polygon law of vector addition yields vec(AB) +vec(BC) +vec(CD) +vec(AD)=2vec(AO) In the light of the above statements, choose the most appropriate answer from the options given below :