Home
Class 12
MATHS
Given three vectors veca=hati-3hatj,vecb...

Given three vectors `veca=hati-3hatj,vecb=2hati-thatj and vecc=-2hati+21hatj` such that `vecalpha=veca+vecb+vecc`. Then the resolution of te vector `vecalpha` into components with respect to `veca and vecb` is given by (A) `3veca-2vecb` (B) `2veca-3vecb` (C) `3vecb-2veca` (D) none of these

A

`3veca - 2vecb`

B

`2veca - 3vecb`

C

`3vecb - 2veca`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca = (hati - 2hatj), vecb = (2hati - 3hatj) and vecc = (2hati + 3hatk) , find (veca + vecb + vecc) .

If veca = 3 hati -4 hatj and vecb =- 2 hati + 3 hatk, what is vecc=veca xx vecb ?

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca=hati+2hatj and vecb=2hati+hatj. Is |veca|=|vecb" Are the vectors veca and vecb equal?.

If veca+3vecb=3hati-hatj and 2veca+vecb=hati-2hatj ,then what is the angle between veca and vecb ?