Home
Class 12
MATHS
For non-zero vectors veca, vecb and vecc...

For non-zero vectors `veca, vecb and vecc , |(veca xx vecb) .vecc| = |veca||vecb||vecc|` holds if and only if

A

`veca.vecb=0,vecb.vecc=0`

B

`vecb.vecc=0, vecc.veca=0`

C

`vecc.veca=0,veca.vecb=0`

D

`veca.vecb=vecb.vecc=vecc.veca=0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

For non zero vectors veca,vecb,vecc|(vecaxxvecb).vecc|=|veca||vecb||vec| holds if and only if (A) veca.vecb=0,vecb.vecc=0 (B) vecb.vecc=0,vecc.veca=0 (C) vecc.veca=0,veca.vecb=0 (D) veca.vecb=vecb.vecc=vecc.veca=0

For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb||vecc| holds iff

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb , vecc)]=4 , then [(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))] is equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca