Home
Class 12
MATHS
veca, vecb,vecc are non-coplanar vectors...

`veca, vecb,vecc` are non-coplanar vectors and `vecp,vecq,vecr` are defined as `vecp = (vecb xx vecc)/([vecb vecc veca]),q=(veca xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc])` then `(veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr` is equal to.

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA=(vecbxxvecc)/([vecb vecc vecc]), vecB=(veccxxveca)/([vecc veca vecb)], vecC=(vecaxxvecb)/([veca vecb vecc)] find [vecA vecB vecC]

Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr be the vectors defined by the relations. vecp=(vecbxxvecc)/([(veca, vecb, vecc)]),vecq=(veccxxveca)/([(veca, vecb, vecc)]),vecr=(veccxxveca)/([(veca,vecb,vecc)]) Then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr is equal to

Let veca,vecb,vecc be non coplanar vectors and vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecq)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) . What is the vaue of (veca-vecb-vecc).vecp(vecb-vecc-veca).vecq+(vecc-veca-vecb).vecr? (A) 0 (B) -3 (C) 3 (D) -9

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca,vecb,vecc be non coplanar vectors and vecp=(vecbxxvecc)/[veca vecb vecc], vecq=(veccxxveca)/[veca vecb vecc], vecr=(vecaxxvecb)/[veca vecb vecc] then (A) vecp.veca=1 (B) vecp.veca+vecq+vecb+vecr.vecc=3 (C) vecp.veca+vecq.vecb+vecr.vecc=0 (D) none of these

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca