Home
Class 12
MATHS
Given a parallelogram ABCD. If |vec(AB)|...

Given a parallelogram `ABCD`. If `|vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c` , then ` vec(DB) . vec(AB)` has the value

A

`(3a^(2) + b^(2)-c^(2))/2`

B

`(a^(2) + 3b^(2) -c^(2))/2`

C

`(a^(2) -b^(2) + 3c^(2))/2`

D

`(a^(2) + 3b^(2) + c^(2))/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Given a parallelogram ABCD. If |vec AB|=a,|vec AD|=b&|vec AC|=c, then vec DB*vec AB has the value

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

In a triangle ABC, if |vec(BC)|=8, |vec(CA)|=7, |vec(AB)|=10 , then the projection of the vec(AB) on vec(AC) is equal to :

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

In the parallelogram ABCD,vec AC^(2)-vec BD^(2)=

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

In a quadrilateral ABCD, vec(AB) + vec(DC) =

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to